Waves, DC Circuits PHYS 501 Homework 1

NAME:

(12 points possible)

1. For each frequency, calculate the wavelength in meters. If it is a **valid** amateur frequency, put which band it's in (17m, etc), *NOTE SIGNIFICANT DIGITS http://www.arrl.org/files/file/Regulatory/Band%20Chart/Band%20Chart%20-%2011X17%20Color.pdf*

	Frequency (MHz)		wavelength(m)		"band" (if relevant)	
a.	49.00				 	
b.	52.525				 	
c.	28.50				 	
d.	221.15				 	
e.	146.52				 	
f.	444.825				 	
g.	450.7125				 	
h.	14.300				 	

2. An automobile battery generally supplies 12V. Is that AC or DC? _____.

If your transceiver transmits 100W, how much current would that require from your car battery? (but of course your transmitter is not 100% efficient, so the fuse had better be larger than that...) (power (W) = I x V) *(always show your work)*

_____A

3. If a gamma ray has a wavelength of 1 nm, what would its frequency be (Hz) (use scientific notation). $c = 3 \times 10^8 \text{ m/s}$

Hz

4. If a circuit has a total resistance of 2 M Ω and a current of .5 A, what is the voltage?

 V	and the power w	would be	W
	PHYS 501 HW 1	<i>page</i> 1 of 3	-

5. If you take the circuit of (4) and put two 2 M Ω resistors in series, what would the new current be?

A	and the total power would be	W
6. If you take the circuit of new current be?	(4) and put two 2 M Ω resistors in par	allel, what would the
	and the total power would be	W
What would be the net effec	tive resistance?MΩ	
	ping trip into the woods. Which kind	
a. Nickel-cadmium	b. iron-pyrite	
c. lead-acid	d. lithium-ion	
8. What is the effective res car)	istance of a circuit with 280V and curr	ent of 60A? (hybrid
	Ω ; what is the power?	

9. What is the voltage across a 50 Ω resistor if a current of 2 A flows through it?

_____V; what is the power? _____

10. Most homes use an average of 2-3 KW of power. Over the course of a day, how many kilowatt-hours would be used if the average is 3 KW? ______
How many KWH would be used in a 30 day month? ______

PHYS 501 HW1 page 2 of 3

(a Kilowatt-hour is a unit of energy, a rate of 1 Kilowatt (1000 J/s) used steadily for one hour. So 1 KWH = 3.6E6 Joules).

11. Check your electricity bill if you pay it yourself (if you live in a dorm, ask your folks for a bill). Choose a summer month if you have one. Month/year chosen:

How many KWH did you use that month?

What was your average rate of usage (KW)? (divide by the number of hours in a month)

What was the price you paid per KWH?_____

12. A solar cell that's 1 m square can deliver about 40W. Assuming its daily summer output is equivalent to 6 hours of max power, how many square meters do you need for your house? (*hint – how many KWH per day does each cell provide?*)